XML Print


چکیده:   (980 مشاهده)
Stem cell polyphenols represent a promising avenue for enhancing wound healing through their multifaceted biological activities. Polyphenols, naturally occurring compounds with potent antioxidant properties, can modulate inflammatory responses, reduce oxidative stress, and promote the proliferation and migration of essential cells involved in tissue repair, such as fibroblasts and keratinocytes. Additionally, they play a critical role in angiogenesis, facilitating improved blood supply to healing tissues. Research indicates that the synergistic use of polyphenols with stem cell therapies could further optimize wound healing outcomes by enhancing stem cell function and survival. As conventional skin disease treatments, primarily corticosteroids, often provide only temporary relief and come with significant side effects, there is increasing interest in stem cell therapies for skin conditions. Stem cells have shown positive outcomes in treating eczema, psoriasis, diabetic wounds, and burns, utilizing both animal and plant stem cell products. However, plant-derived stem cells and natural products, including phytochemicals like resveratrol and curcumin, are preferred due to their reduced side effects and sustainability. These natural compounds aid all stages of wound healing by modulating signaling pathways associated with skin repair and regeneration, thereby minimizing residual wound effects. This review explores the effectiveness of specific natural products and introduces plant derivatives, including plant stem cells and cytokines, highlighting their potential in advancing therapeutic strategies for improved wound healing and skin regeneration. Further clinical investigations are needed to elucidate the optimal types and dosages of polyphenols for clinical applications in regenerative medicine.
 
     
نوع مطالعه: مقالات اصيل | موضوع مقاله: تخصصي

فهرست منابع
1. Moruś M, Baran M, Rost-Roszkowska M, Skotnicka-Graca U Book. Plant stem cells as innovation in cosmetics. 2014.
2. Heidstra R, Sabatini S. Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol 2014;15(5):301-12. [DOI:10.1038/nrm3790]
3. Trehan S, Michniak-Kohn B, Beri K. Plant stem cells in cosmetics: current trends and future directions. Future Sci OA 2017;3(4):FSO226. [DOI:10.4155/fsoa-2017-0026]
4. Iismaa SE, Kaidonis X, Nicks AM, et al. Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med 2018;3(1):6. [DOI:10.1038/s41536-018-0044-5]
5. Tyler SE. Nature's electric potential: a systematic review of the role of bioelectricity in wound healing and regenerative processes in animals, humans, and plants. Front Physiol 2017;8:627. [DOI:10.3389/fphys.2017.00627]
6. Birnbaum KD, Alvarado AS. Slicing across kingdoms: regeneration in plants and animals. Cell 2008;132(4):697-710. [DOI:10.1016/j.cell.2008.01.040]
7. Alvarado AS, Tsonis PA. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 2006;7(11):873-84. [DOI:10.1038/nrg1923]
8. Liang Z, Yang L, Lv Y. Exosome derived from mesenchymal stem cells mediates hypoxia-specific BMP2 gene delivery and enhances bone regeneration. J Chem Eng 2021;422:130084. [DOI:10.1016/j.cej.2021.130084]
9. Sablowski R. Plant and animal stem cells: conceptually similar, molecularly distinct? Trends Cell Biol 2004;14(11):605-11. [DOI:10.1016/j.tcb.2004.09.011]
10. Ozias-Akins P, Vasil IK. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L.(wheat): evidence for somatic embryogenesis. Protoplasma 1982;110:95-105. [DOI:10.1007/BF01281535]
11. Bhaskaran S, Smith RH. Regeneration in cereal tissue culture: a review. Crop Sci 1990;30(6):1328-37. [DOI:10.2135/cropsci1990.0011183X003000060034x]
12. Wu Q, Yang B, Hu K, Cao C, Man Y, Wang P. Deriving osteogenic cells from induced pluripotent stem cells for bone tissue engineering. Tissue Eng Part B Rev 2017;23(1):1-8. [DOI:10.1089/ten.teb.2015.0559]
13. Jha P, Ochatt SJ, Kumar V. WUSCHEL: a master regulator in plant growth signaling. Plant Cell Rep 2020;39:431-44. [DOI:10.1007/s00299-020-02511-5]
14. Lee K, Kim JH, Park O-S, Jung YJ, Seo PJ. Ectopic expression of WOX5 promotes cytokinin signaling and de novo shoot regeneration. Plant Cell Rep 2022;41(12):2415-22. [DOI:10.1007/s00299-022-02932-4]
15. Liu L, Qiu L, Zhu Y, et al. Comparisons between plant and animal stem cells regarding regeneration potential and application. Int J Mol Sci 2023;24(5):4392. [DOI:10.3390/ijms24054392]
16. Somorjai IM, Lohmann JU, Holstein TW, Zhao Z. Stem cells: a view from the roots. Biotechnol J 2012;7(6):704-22. [DOI:10.1002/biot.201100349]
17. Chen Y, Lüttmann FF, Schoger E, et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 2021;373(6562):1537-40. [DOI:10.1126/science.abg5159]
18. Imran SA, M. Hamizul MHA, Khairul Bariah AAN, Wan Kamarul Zaman WS, Nordin F. Regenerative medicine therapy in Malaysia: an update. Front Bioeng 2022;10:789644. [DOI:10.3389/fbioe.2022.789644]
19. Park KI, Ourednik J, Ourednik V, et al. Global gene and cell replacement strategies via stem cells. Gene Ther 2002;9(10):613-24. [DOI:10.1038/sj.gt.3301721]
20. Wei X, Fu S, Li H, et al. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 2022;377(6610):eabp9444. [DOI:10.1126/science.abp9444]
21. Li Y-Y, Tsang EPK, Cui M-Y, Chen X-Y. Too early to call it success: an evaluation of the natural regeneration of the endangered Metasequoia glyptostroboides. Biol Conserv 2012;150(1):1-4. [DOI:10.1016/j.biocon.2012.02.020]
22. Hu Z, Chen J-T, Jiang S-C, Liu Z, Ge S-B, Zhang Z. Chemical components and functions of Taxus chinensis extract. J King Saud Univ Sci 2020;32(2):1562-8. [DOI:10.1016/j.jksus.2019.12.012]
23. Hu Y, Šmarda P, Liu G, Wang B, Gao X, Guo Q. High-depth transcriptome reveals differences in natural haploid Ginkgo biloba L. due to the effect of reduced gene dosage. Int J Mol Sci 2022;23(16):8958. [DOI:10.3390/ijms23168958]
24. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respir 2012;85(1):3-10. [DOI:10.1159/000345615]
25. Carles CC, Fletcher JC. Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 2003;8(8):394-401. [DOI:10.1016/S1360-1385(03)00164-X]
26. Smith LG, Greene B, Veit B, Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 1992;116(1):21-30. [DOI:10.1242/dev.116.1.21]
27. Sugimoto K, Gordon SP, Meyerowitz EM. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 2011;21(4):212-8. [DOI:10.1016/j.tcb.2010.12.004]
28. Fletcher JC. The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization. Plants 2018;7(4):87. [DOI:10.3390/plants7040087]
29. Yan S, Bin S, Ronghua Y, Lijun Z, Xiaoyin X, Yingbin X. Expression and effect of Wnt and Notch signalings in mammalian cutaneous wound healing. Chin J Inj Repair Wound Heal 2014;2:151-7.
30. Greb T, Lohmann JU. Plant Stem Cells. Curr Biol 2016;26(17):816-21. [DOI:10.1016/j.cub.2016.07.070]
31. Aggarwal S, Sardana C, Ozturk M, Sarwat M. Plant stem cells and their applications: special emphasis on their marketed products. 3 Biotech 2020;10(7):291. [DOI:10.1007/s13205-020-02247-9]
32. You Y, Jiang C, Huang L-Q. On plant stem cells and animal stem cells. Chin J Chin Mat Med 2014;39(2):343-5.
33. Park YR, Sultan MT, Park HJ, et al. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomater 2018;67:183-95. [DOI:10.1016/j.actbio.2017.12.006]
34. Tang S-C, Ko J-L, Lu C-T, et al. Chloroquine alleviates the heat-induced to injure via autophagy and apoptosis mechanisms in skin cell and mouse models. Plos one 2022;17(8):e0272797. [DOI:10.1371/journal.pone.0272797]
35. Tan J-Q, Zhang H-H, Lei Z-J, et al. The roles of autophagy and apoptosis in burn wound progression in rats. Burns 2013;39(8):1551-6. [DOI:10.1016/j.burns.2013.04.018]
36. Bayram P, Aksak Karamese S, Ozdemir B, Salum C, Erol HS, Karamese M. Two flavonoids, baicalein and naringin, are effective as anti-inflammatory and anti-oxidant agents in a rat model of polymicrobial sepsis. Immunopharmacol Immunotoxicol 2023;45(5):597-606. [DOI:10.1080/08923973.2023.2197143]
37. Zhang L-X, Li C-X, Kakar MU, et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021;143:112164. [DOI:10.1016/j.biopha.2021.112164]
38. Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Curcumin: A therapeutic potential in ageing-related disorders. PharmaNutr 2020;14:100226. [DOI:10.1016/j.phanu.2020.100226]
39. Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J Tradit Med Complement Ther 2017;7(3):339-46. [DOI:10.1016/j.jtcme.2016.08.002]
40. Kim S-M, Lee E-J, Lee JH, et al. Simvastatin in combination with bergamottin potentiates TNF-induced apoptosis through modulation of NF-κB signalling pathway in human chronic myelogenous leukaemia. Pharm Biol 2016;54(10):2050-60. [DOI:10.3109/13880209.2016.1141221]
41. Lombardo GE, Cirmi S, Musumeci L, et al. Mechanisms underlying the anti-inflammatory activity of bergamot essential oil and its antinociceptive effects. Plants 2020;9(6):704. [DOI:10.3390/plants9060704]
42. Hung W-L, Suh JH, Wang Y. Chemistry and health effects of furanocoumarins in grapefruit. J Food Drug Anal 2017;25(1):71-83. [DOI:10.1016/j.jfda.2016.11.008]
43. Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: Synthetic chemistry follows where nature leads. Biomol 2021;11(8):1203. [DOI:10.3390/biom11081203]
44. Dhaliwal JS, Moshawih S, Goh KW, et al. Pharmacotherapeutics applications and chemistry of chalcone derivatives. Molecules 2022;27(20):7062. [DOI:10.3390/molecules27207062]
45. Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes & nutrition 2011;6:125-47. [DOI:10.1007/s12263-011-0210-5]
46. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015;97:55-74. [DOI:10.1016/j.ejmech.2015.04.040]
47. Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A. The Therapeutic Potential of Apigenin. Int J Mol Sci 2019;20. [DOI:10.3390/ijms20061305]
48. Javed Z, Sadia H, Iqbal MJ, et al. Apigenin role as cell-signaling pathways modulator: implications in cancer prevention and treatment. Cancer Cell Int 2021;21:1-11. [DOI:10.1186/s12935-021-01888-x]
49. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022;27(9):2901. [DOI:10.3390/molecules27092901]
50. García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009;58(9):537-52. [DOI:10.1007/s00011-009-0037-3]
51. Weng Z, Patel AB, Panagiotidou S, Theoharides TC. The novel flavone tetramethoxyluteolin is a potent inhibitor of human mast cells. J Aller Clin Immunol 2015;135(4):1044-52. e5. [DOI:10.1016/j.jaci.2014.10.032]
52. Adewole SO, Caxton-Martins EA, Ojewole JA. Protective effect of quercetin on the morphology of pancreatic β-cells of streptozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med 2007;4(1):64-74. [DOI:10.4314/ajtcam.v4i1.31196]
53. Slika H, Mansour H, Wehbe N, et al. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022;146:112442. [DOI:10.1016/j.biopha.2021.112442]
54. Kandhare AD, Alam J, Patil MV, Sinha A, Bodhankar SL. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharm Biol 2016;54(3):419-32. [DOI:10.3109/13880209.2015.1038755]
55. Kandhare AD, Ghosh P, Bodhankar SL. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact 2014;219:101-12. [DOI:10.1016/j.cbi.2014.05.012]
56. Kazemi A, Safa M, Shahbazi A. RITA enhances chemosensivity of pre-B ALL cells to doxorubicin by inducing p53-dependent apoptosis. Hematology 2011;16(4):225-31. [DOI:10.1179/102453311X12953015767536]
57. Bajouri A, Orouji Z, Taghiabadi E, Nazari A, Shahbazi A, Fallah N, Mohammadi P, Rezvani M, Jouyandeh Z, Vaezirad F, Khalajasadi Z. Long-term follow-up of autologous fibroblast transplantation for facial contour deformities, a non-randomized phase IIa clinical trial. Cell Journal (Yakhteh) 2019;22(1):75.
58. Shahbazi A, Zargar SJ, Aghdami N, Habibi M. The story of melanocyte: a long way from bench to bedside. Cell and tissue banking 2024;25(1):143-57. [DOI:10.1007/s10561-023-10081-5]
59. Orouji Z, Bajouri A, Ghasemi M, Mohammadi P, Fallah N, Shahbazi A, Rezvani M, Vaezirad F, Khalajasadi Z, Alizadeh A, Taghiabadi E. A single-arm open-label clinical trial of autologous epidermal cell transplantation for stable vitiligo: A 30-month follow-up. J Dermatol Sci 2018;89(1):52-9. [DOI:10.1016/j.jdermsci.2017.10.007]
60. Mirghaffari M, Mahmoodiyan A, Mahboubizadeh S, Shahbazi A, Soleimani Y, Mirghaffari S, Shahravi Z. Electro-spun piezoelectric PLLA smart composites as a scaffold on bone fracture: A review. Regenerative Therapy 2025;28:591-605. [DOI:10.1016/j.reth.2025.01.026]
61. Shahbazi A, Zargar SJ, Bajouri A, Mohammadi P, Aghdami N. Differential Gene Expression and Tumorigenicity Analysis of Cultured Melanocyte Comparing Melanoma. Int J Mol Cellular Med 2024;13(4):387.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله جهانی جراحی پلاستیک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | World Journal of Plastic Surgery

Designed & Developed by : Yektaweb