Volume 10, Issue 2 (2-2021)                   WJPS 2021, 10(2): 76-81 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbari H, Ahmadi M, Fatemi M J, Foroutan A, Akbari P, Bagheri H et al . The Role of Recombinant Fibroblast Growth Factor 1 in Enhancing the Angiogenesis in Random Cutaneous Flaps in Animal Model of Rat. WJPS. 2021; 10 (2) :76-81
URL: http://wjps.ir/article-1-774-en.html
Department of Plastic and Recon-structive Surgery, School of Medi-cine, Iran University of Medical Sci-ences (IUMS), Tehran, Iran
Abstract:   (564 Views)
Randomized skin flaps have been used as a basic treatment modality for covering skin defects for a long time but they have always been in the risk of an inherent ischemia. Fibroblast growth factor 1 is a known angiogenic factor in in vitro studies which has shown conflicting results in in vivo investigation. We aimed to determine the effect of recombinant fibroblast growth factor on the angiogenesis rate of random cutaneous flap in animal model of rats.
This experimental study was conducted on 24 adult male rats randomized to 2 groups. In the first group FGF1 was injected subdermally in equally divided doses and distances of random flap surface in days 1, 3 and 5. In second group, normal saline was injected as control. Flap surgery was done on day 21 after first injection. The extent of necrosis and angiogenesis (mean vessel density) were assessed in day 14 after surgery.
The mean percentage of clinically apparent necrosis was 35.2% (±10.5) in intervention (FGF1) group and 38.1% (±8.7) in control (normal saline), re-spectively. Mean vessel density was 86.20±5.6/mm2 in control group and 90.17±5.5/mm2 in intervention group, which showed no statistically signifi-cant difference.
Mean vessel density and mean percentage of clinically apparent necrosis area were similar in 2 groups of rats with random cutaneous flaps receiving FGF1 or normal saline.
Full-Text [PDF 466 kb]   (202 Downloads)    
Type of Study: Original Article | Subject: Special
Received: 2021/05/16 | Accepted: 2021/02/22 | Published: 2021/06/25

1. Lee MS, Ahmad T, Lee J, et al. Dual delivery of growth factors with coacervate-coated poly(lactic-co-glycolic acid) nanofiber improves neovascularization in a mouse skin flap model. Biomaterials 2017;124:65-77. doi: 10.1016/j.biomaterials.2017.01.036. [DOI:10.1016/j.biomaterials.2017.01.036]
2. Chen GJ, Chen YH, Yang XQ and Li ZJ. Nano-microcapsule basic fibroblast growth factor combined with hypoxia-inducible factor-1 improves random skin flap survival in rats. Mol Med Rep 2016;13:1661-1666. [DOI:10.3892/mmr.2015.4699]
3. Koukourakis MI, Giatromanolaki A, Chong W. Amifostine induces anaerobic metabolism and hypoxia-inducible factor 1 alpha. Cancer Chemother Pharmacol 2004;53:8-14. [DOI:10.1007/BF02665347]
4. Fukunaga Y, Izawa-Ishizawa Y, Horinouchi Y, et al. Topical application of nitrosonifedipine, a novel radical scavenger, ameliorates ischemic skin flap necrosis in a mouse model. Wound Repair Regen 2017;25(2):217-223. doi: 10.1111/wrr.12510. Epub 2017 Feb 13. [DOI:10.1111/wrr.12510]
5. Lu W, Ip W, Jing W, Holmes AD, Chow SP. Biomechanical properties of thin skin flap after basic fibroblast growth factor (bFGF) administration. Br J Plastic Surg 2000;53:225-9. doi: 10.1054/bjps.1999.3264. [DOI:10.1054/bjps.1999.3264]
6. Rinsch C, Quinodoz P, Pittet B, Alizadeh N, Baetens D, Montandon D, et al. Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia. Gene Ther 2001;8:523-33. doi: 10.1038/sj.gt.3301436. [DOI:10.1038/sj.gt.3301436]
7. Zhang F, Waller W, Lineaweaver WC. Growth factors and flap survival. Microsurgery 2004;24:162-7. doi: 10.1002/micr.20041. [DOI:10.1002/micr.20041]
8. Wu H, Ding J, Wang L, Lin J, Li S, Xiang G, Jiang L, Xu H, Gao W, Zhou K. Valproic acid enhances the viability of random pattern skin flaps: involvement of enhancing angiogenesis and inhibiting oxidative stress and apoptosis. Drug Des Devel Ther 2018;12:3951-3960. doi:10.2147/DDDT.S186222 [DOI:10.2147/DDDT.S186222]
9. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001; 2(3):3005. doi: 10.1186/gb-2001-2-3-reviews3005 [DOI:10.1186/gb-2001-2-3-reviews3005]
10. Armelin HA. Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci 1973;70(9):2702-6. doi: 10.1073/pnas.70.9.2702. [DOI:10.1073/pnas.70.9.2702]
11. Gospodarowicz D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 1974;249(453):123-7. doi: 10.1038/249123a0. [DOI:10.1038/249123a0]
12. Thomas KA, Rios-Candelore M, Fitzpatrick S. Purification and characterization of acidic fibroblast growth factor from bovine brain. Proc Natl Acad Sci 1984;81(2):357-61. doi: 10.1073/pnas.81.2.357. [DOI:10.1073/pnas.81.2.357]
13. Rumalla VK, Borah GL. Cytokines, growth factors, and plastic surgery. Plast Reconstr Surg 2001;108:719-33. doi: 10.1097/00006534-200109010-00019. [DOI:10.1097/00006534-200109010-00019]
14. Fu X, Li X, Cheng B, Chen W, Sheng Z. Engineered growth factors and cutaneous wound healing: success and possible questions in the past 10 years. Wound Repair Regen 2005;13(2):122-30. doi: 10.1111/j.1067-1927.2005.130202.x. [DOI:10.1111/j.1067-1927.2005.130202.x]
15. Goldman R. Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care. 2004;17:24-35. doi: 10.1097/00129334-200401000-00012. [DOI:10.1097/00129334-200401000-00012]
16. Fayazzadeh E, Yavarifar H, Rafie R et al. Fibroblast Growth Factor-1 vs. Fibroblast Growth Factor-2 in Ischemic Skin Flap Survival in a Rat Animal Model. World J Plast Surg 2016;5(3): 274-279.
17. Vourtsis S, Papalois A. Improvement of a long random skin flap survival by application of vascular endothelial growth factor in various ways of local administration in a rat model. Indian J Plast Surg 2012;45(1):102-108. doi: 10.4103/0970-0358.96596 [DOI:10.4103/0970-0358.96596]
18. Fayazzadeh E, Ahmadi SH, Rabbani S, Boroumand MA, Salavati A, Anvari MS. A comparative study of recombinant human basic fibroblast growth factor (bFGF) and erythropoietin (EPO) in prevention of skin flap ischemic necrosis in rats. Arch Iran Med 2012;15(9):553-6. PMID: 22924373.
19. Hom DB, Unger GM, Pernell KJ, Manivel JC. Improving surgical wound healing with basic fibroblast growth factor after radiation. Laryngoscope 2005;115(3):412-22. doi: 10.1097/01.mlg.0000157852.01402.12. [DOI:10.1097/01.mlg.0000157852.01402.12]
20. Khouri RK, Brown DM, Leal-Khouri SM. The effect of basic fibroblast growth factor on the neovascularisation process: skin flap survival and staged flap transfers. British Journal of Plastic Surgery1991;44(8):585-588. doi: 10.1016/0007-1226(91)90094-z. [DOI:10.1016/0007-1226(91)90094-Z]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | World Journal of Plastic Surgery

Designed & Developed by : Yektaweb