1. 1 Karimi M, Mosaddad SA, Aghili SS, Dortaj H, Hashemi SS, Kiany F. Attachment and proliferation of human gingival fibroblasts seeded on barrier membranes using Wharton's jelly‐derived stem cells conditioned medium: An in vitro study. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2024;112(1):e35368. [
DOI:10.1002/jbm.b.35368]
2. 2 Martinelli V, Bosi S, Peña B, et al. 3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering. ACS Appl Bio Mater 2018 Nov 19;1(5):1530-7. [
DOI:10.1021/acsabm.8b00440]
3. 3 Minami K, Kasuya Y, Yamazaki T, et al. Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Large-Scale Tissue Engineering. Adv Mater 2015 Jul 15;27(27):4020-6. [
DOI:10.1002/adma.201501690]
4. 4 Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials (Basel) 2020 Sep 7;10(9). [
DOI:10.3390/nano10091770]
5. 5 Ding X, Liu H, Fan Y. Graphene-Based Materials in Regenerative Medicine. Adv Healthc Mater 2015 Jul 15;4(10):1451-68. [
DOI:10.1002/adhm.201500203]
6. 6 Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater 2013 Apr 24;25(16):2258-68. [
DOI:10.1002/adma.201203700]
7. 7 Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 2016 Jun;37:131-42. [
DOI:10.1016/j.actbio.2016.04.008]
8. 8 Nurunnabi M, Parvez K, Nafiujjaman M, et al. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Advances 2015;5(52):42141-61. [
DOI:10.1039/C5RA04756K]
9. 9 González-Rodríguez L, Pérez-Davila S, Lama R, et al. 3D printing of PLA: CaP: GO scaffolds for bone tissue applications. RSC Advances 2023;13(23):15947-59. [
DOI:10.1039/D3RA00981E]
10. 10 Karlický F, Kumara Ramanatha Datta K, Otyepka M, Zbořil R. Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano 2013 2013/08/27;7(8):6434-64. [
DOI:10.1021/nn4024027]
11. 11 Cabral CS, de Melo-Diogo D, Ferreira P, Moreira AF, Correia IJ. Reduced graphene oxide-reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regeneration. Int J Biol Macromol 2024;259:129210. [
DOI:10.1016/j.ijbiomac.2024.129210]
12. 12 Konios D, Stylianakis MM, Stratakis E, Kymakis E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 2014;430:108-12. [
DOI:10.1016/j.jcis.2014.05.033]
13. 13 Gurunathan S, Han JW, Kim JH. Green chemistry approach for the synthesis of biocompatible graphene. Int J Nanomedicine 2013;8:2719-32. [
DOI:10.2147/IJN.S45174]
14. 14 Muthoosamy K, Bai RG, Abubakar IB, et al. Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. Int J Nanomedicine 2015;10:1505-19. [
DOI:10.2147/IJN.S75213]
15. 15 Dolbin A, Vinnikov N, Esel'son V, et al. The effect of graphene oxide reduction temperature on the kinetics of low-temperature sorption of hydrogen. Low Temp. Phys. 2019;45(4):422-6. [
DOI:10.1063/1.5093523]
16. 16 Velasco A, Ryu YK, Boscá A, et al. Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy Fuels 2021;5(5):1235-54. [
DOI:10.1039/D0SE01849J]
17. 17 Alven S, Buyana B, Feketshane Z, Aderibigbe BA. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics 2021;13(7):964. [
DOI:10.3390/pharmaceutics13070964]
18. 18 Ghosal K, Thomas S, Kalarikkal N, Gnanamani A. Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute. J Polymer Res 2014;21(5):1-5. [
DOI:10.1007/s10965-014-0410-y]
19. 19 Kumbar S, James R, Nukavarapu S, Laurencin C. Electrospun nanofiber scaffolds: engineering soft tissues. Biomedical Materials 2008;3(3):034002. [
DOI:10.1088/1748-6041/3/3/034002]
20. 20 Xie X, Chen Y, Wang X, et al. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. Journal of Materials Science & Technology 2020;59:243-61. [
DOI:10.1016/j.jmst.2020.04.037]
21. 21 Ma K, Chan CK, Liao S, Hwang WY, Feng Q, Ramakrishna S. Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 2008;29(13):2096-103. [
DOI:10.1016/j.biomaterials.2008.01.024]
22. 22 Hashemi S-S, Mohammadi AA, Rajabi S-S, et al. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. BioImpacts: BI 2023;13(4):275. [
DOI:10.34172/bi.2023.26317]
23. 23 Hashemi S, Rafati A. Comparison between human cord blood serum and platelet-rich plasma supplementation for human wharton's jelly stem cells and dermal fibroblasts culture. Int J Med Res Health Sci 2016;5(8):191-6.
24. 24 Hashemi SS, Mohammadi AA, Kabiri H, et al. The healing effect of Wharton's jelly stem cells seeded on biological scaffold in chronic skin ulcers: A randomized clinical trial. J Cosmet Dermatol 2019;18(6):1961-7. [
DOI:10.1111/jocd.12931]
25. 25 Mitra T, Manna PJ, Raja STK, Gnanamani A, Kundu PP. Curcumin loaded nano graphene oxide reinforced fish scale collagen - a 3D scaffold biomaterial for wound healing applications. RSC Adv 2015;5(119):98653-65. [
DOI:10.1039/C5RA15726A]
26. 26 Li A, Zhang C, Zhang Y-F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers 2017;9(9):437. [
DOI:10.3390/polym9090437]
27. 27 Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers 2021;13(13):2105. [
DOI:10.3390/polym13132105]
28. 28 Asvar Z, Pirbonyeh N, Emami A, et al. Enhancing antibacterial activity against multi-drug resistant wound bacteria: Incorporating multiple nanoparticles into chitosan-based nanofibrous dressings for effective wound regeneration. Journal of Drug Delivery Science and Technology 2024;95:105542. [
DOI:10.1016/j.jddst.2024.105542]
29. 29 Amirsadeghi A, Jafari A, Hashemi S-S, et al. Sprayable antibacterial Persian gum-silver nanoparticle dressing for wound healing acceleration. Materials Today Communications 2021;27:102225. [
DOI:10.1016/j.mtcomm.2021.102225]
30. 30 Hashemi S-S, Pirmoradi M, Rafati A, Kian M, Mohammadi AA, Ali M. A human acellular dermal matrix coated with zinc oxide nanoparticles accelerates tendon repair in patients with hand flexor tendon injuries in zone 5 of the hand. Bioimpacts 2024;14(5):27748.. [
DOI:10.34172/bi.2024.27748]
31. 31 Sobhanian P, Khorram M, Hashemi S-S, Mohammadi A. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int J Biol Macromol 2019;130:977-87. [
DOI:10.1016/j.ijbiomac.2019.03.045]
32. 32 Trucco D, Vannozzi L, Teblum E, et al. Graphene Oxide‐Doped Gellan Gum-PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Advanced Healthcare Materials 2021;10(7):2001434. [
DOI:10.1002/adhm.202001434]
33. 33 Gohari PHM, Nazarpak MH, Solati-Hashjin MJMTC. The effect of adding reduced graphene oxide to electrospun polycaprolactone scaffolds on MG-63 cells activity. Materials Today Communications 2021;27:102287. [
DOI:10.1016/j.mtcomm.2021.102287]
34. 34 Jiao D, Zheng A, Liu Y, et al. Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact Mater 2021;6(7):2011-28. [
DOI:10.1016/j.bioactmat.2020.12.003]
35. 35 de Lacerda Dantas PC, Martins-Júnior PA, Coutinho DCO, et al. Nanohybrid composed of graphene oxide functionalized with sodium hyaluronate accelerates bone healing in the tibia of rats. Materials Science and Engineering: C 2021;123:111961. [
DOI:10.1016/j.msec.2021.111961]
36. 36 Aparicio-Collado JL, García-San-Martín N, Molina-Mateo J, et al. Electroactive calcium-alginate/polycaprolactone/reduced graphene oxide nanohybrid hydrogels for skeletal muscle tissue engineering. Colloids Surf B Biointerfaces 2022 Jun;214:112455. [
DOI:10.1016/j.colsurfb.2022.112455]
37. 37 Magaz A, Li X, Gough JE, Blaker JJ. Graphene oxide and electroactive reduced graphene oxide-based composite fibrous scaffolds for engineering excitable nerve tissue. Mater Sci Eng C Mater Biol Appl 2021 Feb;119:111632. [
DOI:10.1016/j.msec.2020.111632]
38. 38 Zhang C, Wang X, Fan S, Lan P, Cao C, Zhang Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids and Surfaces B: Biointerfaces 2021 2021/01/01/;197:111444. [
DOI:10.1016/j.colsurfb.2020.111444]
39. 39 Zhang Q, Liu X, Meng H, Liu S, Zhang C. Reduction pathway-dependent cytotoxicity of reduced graphene oxide. Environmental Science: Nano 2018;5(6):1361-71. [
DOI:10.1039/C8EN00242H]
40. 40 Tran T, Le HN, Tran V, Tran L, Vu T. Tithonia diversifolia pectin - reduced graphene oxide and its cytotoxic activity. Materials Letters 2016 07/01;183. [
DOI:10.1016/j.matlet.2016.07.088]
41. 41 Mukherjee S, Sriram P, Barui AK, et al. Graphene Oxides Show Angiogenic Properties. Adv Healthc Mater 2015;4(11):1722-32. [
DOI:10.1002/adhm.201500155]
42. 42 Chakraborty S, Ponrasu T, Chandel S, Dixit M, Muthuvijayan VJRSOS. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. R Soc Open Sci 2018;5. [
DOI:10.1098/rsos.172017]
43. 43 Kang Y, Liu J, Wu J, et al. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int J Nanomedicine 2017;12:5501-10. [
DOI:10.2147/IJN.S141032]
44. 44 Nie W, Peng C, Zhou X, et al. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 2017;116:325-37. [
DOI:10.1016/j.carbon.2017.02.013]
45. 45 Syama S, Aby C, Maekawa T, Sakthikumar D, Mohanan PJDM. Nano-bio compatibility of PEGylated reduced graphene oxide on mesenchymal stem cells. 2D Materials 2017;4(2):025066. [
DOI:10.1088/2053-1583/aa65c2]
46. 46 Savchenko A, Yin RT, Kireev D, Efimov IR, Molokanova E. Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering. Front Bioeng Biotechnol 2021;9. [
DOI:10.3389/fbioe.2021.797340]
47. 47 Bahrami S, Baheiraei N, Shahrezaee M. Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Sci Rep 2021 2021/08/18;11(1):16783. [
DOI:10.1038/s41598-021-96271-1]
48. 48 Fu J, Zhang Y, Chu J, et al. Reduced Graphene Oxide Incorporated Acellular Dermal Composite Scaffold Enables Efficient Local Delivery of Mesenchymal Stem Cells for Accelerating Diabetic Wound Healing. ACS Biomaterials Science & Engineering 2019 2019/08/12;5(8):4054-66. [
DOI:10.1021/acsbiomaterials.9b00485]
49. 49 Guo W, Wang S, Yu X, et al. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 2016;8(4):1897-904. [
DOI:10.1039/C5NR06602F]
50. 50 Cifuentes J, Muñoz-Camargo C, Cruz JC. Reduced Graphene Oxide-Extracellular Matrix Scaffolds as a Multifunctional and Highly Biocompatible Nanocomposite for Wound Healing: Insights into Characterization and Electroconductive Potential. Nanomaterials (Basel) 2022 Aug 19;12(16). [
DOI:10.3390/nano12162857]
51. 51 Lesiak B, Trykowski G, Toth J, et al. Chemical and structural properties of reduced graphene oxide-dependence on the reducing agent. J Materials Sci 2021 02/01;56:1-17.