Volume 14, Issue 2 (2025)                   WJPS 2025, 14(2): 21-32 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kashkooli T P, Hatami M, Hashemi S, Shahhossein Z. Evaluation the Efficacy of Reduced Graphene-based Nanofibers by Laser Irradiation for Tissue Engineering Application. WJPS 2025; 14 (2) :21-32
URL: http://wjps.ir/article-1-1393-en.html
1- Faculty of Physics, Shiraz university of Technology, Shiraz, Iran
2- Burn and Wound Healing Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran , Sara_hashemi@sums.ac.ir
3- Burn and Wound Healing Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (910 Views)
Background: Graphene oxide (GO) and reduced graphene oxide (rGO) are graphene-based nanomaterials (GBNs) gained a lot of interest in biomedical tissue engineering due to their large specific surface area, unique structure, excellent photo-thermal effect, pH response, and broad-spectrum antibacterial properties. We aimed to modify the properties of graphene oxide/polycaprolactone (GO/ PCL) scaffold by laser irradiation.
Methods: The scaffold was fabricated by electrospinning method and then laser irradiation was applied to improve the scaffold's properties. The solution containing of PCL and graphene oxide was combined in an optimized ratio and then transferred to an electrospinning syringe. The temperature distribution affected by laser energy on a scaffold was predicted by heat equation. The Crank-Nicholson numerical method in two dimensions was used in this regard. The morphological properties were evaluated by SEM, XRD, and IDFIX. MTT assay was applied for biocompatibility evaluation.
Results: The 808 nm wavelength and 800 mW power was ideal laser irradiation. SEM results showed the appropriateness of fibres.  MTT results showed a significantly higher cell viability in PCL/rGO group compared to PCL/GO and PCL scaffolds (p≤0.001).
Conclusion: The conversion of GO into rGO led to the better morphology and the reduction of cytotoxicity that gave the scaffold superior properties. Hence, it is justifiable to construct a composite scaffold, enhanced with rGO, to improve its conductivity, mechanical properties, and biocompatibility in the context of tissue engineering.
 
Full-Text [PDF 966 kb]   (258 Downloads)    
Type of Study: Original Article | Subject: Special
ePublished: 2025/04/21

References
1. 1 Karimi M, Mosaddad SA, Aghili SS, Dortaj H, Hashemi SS, Kiany F. Attachment and proliferation of human gingival fibroblasts seeded on barrier membranes using Wharton's jelly‐derived stem cells conditioned medium: An in vitro study. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2024;112(1):e35368. [DOI:10.1002/jbm.b.35368]
2. 2 Martinelli V, Bosi S, Peña B, et al. 3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering. ACS Appl Bio Mater 2018 Nov 19;1(5):1530-7. [DOI:10.1021/acsabm.8b00440]
3. 3 Minami K, Kasuya Y, Yamazaki T, et al. Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Large-Scale Tissue Engineering. Adv Mater 2015 Jul 15;27(27):4020-6. [DOI:10.1002/adma.201501690]
4. 4 Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials (Basel) 2020 Sep 7;10(9). [DOI:10.3390/nano10091770]
5. 5 Ding X, Liu H, Fan Y. Graphene-Based Materials in Regenerative Medicine. Adv Healthc Mater 2015 Jul 15;4(10):1451-68. [DOI:10.1002/adhm.201500203]
6. 6 Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater 2013 Apr 24;25(16):2258-68. [DOI:10.1002/adma.201203700]
7. 7 Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 2016 Jun;37:131-42. [DOI:10.1016/j.actbio.2016.04.008]
8. 8 Nurunnabi M, Parvez K, Nafiujjaman M, et al. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Advances 2015;5(52):42141-61. [DOI:10.1039/C5RA04756K]
9. 9 González-Rodríguez L, Pérez-Davila S, Lama R, et al. 3D printing of PLA: CaP: GO scaffolds for bone tissue applications. RSC Advances 2023;13(23):15947-59. [DOI:10.1039/D3RA00981E]
10. 10 Karlický F, Kumara Ramanatha Datta K, Otyepka M, Zbořil R. Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano 2013 2013/08/27;7(8):6434-64. [DOI:10.1021/nn4024027]
11. 11 Cabral CS, de Melo-Diogo D, Ferreira P, Moreira AF, Correia IJ. Reduced graphene oxide-reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regeneration. Int J Biol Macromol 2024;259:129210. [DOI:10.1016/j.ijbiomac.2024.129210]
12. 12 Konios D, Stylianakis MM, Stratakis E, Kymakis E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 2014;430:108-12. [DOI:10.1016/j.jcis.2014.05.033]
13. 13 Gurunathan S, Han JW, Kim JH. Green chemistry approach for the synthesis of biocompatible graphene. Int J Nanomedicine 2013;8:2719-32. [DOI:10.2147/IJN.S45174]
14. 14 Muthoosamy K, Bai RG, Abubakar IB, et al. Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. Int J Nanomedicine 2015;10:1505-19. [DOI:10.2147/IJN.S75213]
15. 15 Dolbin A, Vinnikov N, Esel'son V, et al. The effect of graphene oxide reduction temperature on the kinetics of low-temperature sorption of hydrogen. Low Temp. Phys. 2019;45(4):422-6. [DOI:10.1063/1.5093523]
16. 16 Velasco A, Ryu YK, Boscá A, et al. Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy Fuels 2021;5(5):1235-54. [DOI:10.1039/D0SE01849J]
17. 17 Alven S, Buyana B, Feketshane Z, Aderibigbe BA. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics 2021;13(7):964. [DOI:10.3390/pharmaceutics13070964]
18. 18 Ghosal K, Thomas S, Kalarikkal N, Gnanamani A. Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute. J Polymer Res 2014;21(5):1-5. [DOI:10.1007/s10965-014-0410-y]
19. 19 Kumbar S, James R, Nukavarapu S, Laurencin C. Electrospun nanofiber scaffolds: engineering soft tissues. Biomedical Materials 2008;3(3):034002. [DOI:10.1088/1748-6041/3/3/034002]
20. 20 Xie X, Chen Y, Wang X, et al. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. Journal of Materials Science & Technology 2020;59:243-61. [DOI:10.1016/j.jmst.2020.04.037]
21. 21 Ma K, Chan CK, Liao S, Hwang WY, Feng Q, Ramakrishna S. Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 2008;29(13):2096-103. [DOI:10.1016/j.biomaterials.2008.01.024]
22. 22 Hashemi S-S, Mohammadi AA, Rajabi S-S, et al. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. BioImpacts: BI 2023;13(4):275. [DOI:10.34172/bi.2023.26317]
23. 23 Hashemi S, Rafati A. Comparison between human cord blood serum and platelet-rich plasma supplementation for human wharton's jelly stem cells and dermal fibroblasts culture. Int J Med Res Health Sci 2016;5(8):191-6.
24. 24 Hashemi SS, Mohammadi AA, Kabiri H, et al. The healing effect of Wharton's jelly stem cells seeded on biological scaffold in chronic skin ulcers: A randomized clinical trial. J Cosmet Dermatol 2019;18(6):1961-7. [DOI:10.1111/jocd.12931]
25. 25 Mitra T, Manna PJ, Raja STK, Gnanamani A, Kundu PP. Curcumin loaded nano graphene oxide reinforced fish scale collagen - a 3D scaffold biomaterial for wound healing applications. RSC Adv 2015;5(119):98653-65. [DOI:10.1039/C5RA15726A]
26. 26 Li A, Zhang C, Zhang Y-F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers 2017;9(9):437. [DOI:10.3390/polym9090437]
27. 27 Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers 2021;13(13):2105. [DOI:10.3390/polym13132105]
28. 28 Asvar Z, Pirbonyeh N, Emami A, et al. Enhancing antibacterial activity against multi-drug resistant wound bacteria: Incorporating multiple nanoparticles into chitosan-based nanofibrous dressings for effective wound regeneration. Journal of Drug Delivery Science and Technology 2024;95:105542. [DOI:10.1016/j.jddst.2024.105542]
29. 29 Amirsadeghi A, Jafari A, Hashemi S-S, et al. Sprayable antibacterial Persian gum-silver nanoparticle dressing for wound healing acceleration. Materials Today Communications 2021;27:102225. [DOI:10.1016/j.mtcomm.2021.102225]
30. 30 Hashemi S-S, Pirmoradi M, Rafati A, Kian M, Mohammadi AA, Ali M. A human acellular dermal matrix coated with zinc oxide nanoparticles accelerates tendon repair in patients with hand flexor tendon injuries in zone 5 of the hand. Bioimpacts 2024;14(5):27748.. [DOI:10.34172/bi.2024.27748]
31. 31 Sobhanian P, Khorram M, Hashemi S-S, Mohammadi A. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int J Biol Macromol 2019;130:977-87. [DOI:10.1016/j.ijbiomac.2019.03.045]
32. 32 Trucco D, Vannozzi L, Teblum E, et al. Graphene Oxide‐Doped Gellan Gum-PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Advanced Healthcare Materials 2021;10(7):2001434. [DOI:10.1002/adhm.202001434]
33. 33 Gohari PHM, Nazarpak MH, Solati-Hashjin MJMTC. The effect of adding reduced graphene oxide to electrospun polycaprolactone scaffolds on MG-63 cells activity. Materials Today Communications 2021;27:102287. [DOI:10.1016/j.mtcomm.2021.102287]
34. 34 Jiao D, Zheng A, Liu Y, et al. Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact Mater 2021;6(7):2011-28. [DOI:10.1016/j.bioactmat.2020.12.003]
35. 35 de Lacerda Dantas PC, Martins-Júnior PA, Coutinho DCO, et al. Nanohybrid composed of graphene oxide functionalized with sodium hyaluronate accelerates bone healing in the tibia of rats. Materials Science and Engineering: C 2021;123:111961. [DOI:10.1016/j.msec.2021.111961]
36. 36 Aparicio-Collado JL, García-San-Martín N, Molina-Mateo J, et al. Electroactive calcium-alginate/polycaprolactone/reduced graphene oxide nanohybrid hydrogels for skeletal muscle tissue engineering. Colloids Surf B Biointerfaces 2022 Jun;214:112455. [DOI:10.1016/j.colsurfb.2022.112455]
37. 37 Magaz A, Li X, Gough JE, Blaker JJ. Graphene oxide and electroactive reduced graphene oxide-based composite fibrous scaffolds for engineering excitable nerve tissue. Mater Sci Eng C Mater Biol Appl 2021 Feb;119:111632. [DOI:10.1016/j.msec.2020.111632]
38. 38 Zhang C, Wang X, Fan S, Lan P, Cao C, Zhang Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids and Surfaces B: Biointerfaces 2021 2021/01/01/;197:111444. [DOI:10.1016/j.colsurfb.2020.111444]
39. 39 Zhang Q, Liu X, Meng H, Liu S, Zhang C. Reduction pathway-dependent cytotoxicity of reduced graphene oxide. Environmental Science: Nano 2018;5(6):1361-71. [DOI:10.1039/C8EN00242H]
40. 40 Tran T, Le HN, Tran V, Tran L, Vu T. Tithonia diversifolia pectin - reduced graphene oxide and its cytotoxic activity. Materials Letters 2016 07/01;183. [DOI:10.1016/j.matlet.2016.07.088]
41. 41 Mukherjee S, Sriram P, Barui AK, et al. Graphene Oxides Show Angiogenic Properties. Adv Healthc Mater 2015;4(11):1722-32. [DOI:10.1002/adhm.201500155]
42. 42 Chakraborty S, Ponrasu T, Chandel S, Dixit M, Muthuvijayan VJRSOS. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. R Soc Open Sci 2018;5. [DOI:10.1098/rsos.172017]
43. 43 Kang Y, Liu J, Wu J, et al. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int J Nanomedicine 2017;12:5501-10. [DOI:10.2147/IJN.S141032]
44. 44 Nie W, Peng C, Zhou X, et al. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 2017;116:325-37. [DOI:10.1016/j.carbon.2017.02.013]
45. 45 Syama S, Aby C, Maekawa T, Sakthikumar D, Mohanan PJDM. Nano-bio compatibility of PEGylated reduced graphene oxide on mesenchymal stem cells. 2D Materials 2017;4(2):025066. [DOI:10.1088/2053-1583/aa65c2]
46. 46 Savchenko A, Yin RT, Kireev D, Efimov IR, Molokanova E. Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering. Front Bioeng Biotechnol 2021;9. [DOI:10.3389/fbioe.2021.797340]
47. 47 Bahrami S, Baheiraei N, Shahrezaee M. Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Sci Rep 2021 2021/08/18;11(1):16783. [DOI:10.1038/s41598-021-96271-1]
48. 48 Fu J, Zhang Y, Chu J, et al. Reduced Graphene Oxide Incorporated Acellular Dermal Composite Scaffold Enables Efficient Local Delivery of Mesenchymal Stem Cells for Accelerating Diabetic Wound Healing. ACS Biomaterials Science & Engineering 2019 2019/08/12;5(8):4054-66. [DOI:10.1021/acsbiomaterials.9b00485]
49. 49 Guo W, Wang S, Yu X, et al. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 2016;8(4):1897-904. [DOI:10.1039/C5NR06602F]
50. 50 Cifuentes J, Muñoz-Camargo C, Cruz JC. Reduced Graphene Oxide-Extracellular Matrix Scaffolds as a Multifunctional and Highly Biocompatible Nanocomposite for Wound Healing: Insights into Characterization and Electroconductive Potential. Nanomaterials (Basel) 2022 Aug 19;12(16). [DOI:10.3390/nano12162857]
51. 51 Lesiak B, Trykowski G, Toth J, et al. Chemical and structural properties of reduced graphene oxide-dependence on the reducing agent. J Materials Sci 2021 02/01;56:1-17.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | World Journal of Plastic Surgery

Designed & Developed by : Yektaweb