Volume 10, Issue 2 (2-2021)                   WJPS 2021, 10(2): 67-75 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahanian M, Hoseini S, Atashi A, Saberi M, Hoseini S A, Mozaffari K et al . Evaluation of Acellular Dermal Matrix (ADM) as a Scaf-fold for Adipose-Derived Stem Cell Transfer in the Rat Model. WJPS. 2021; 10 (2) :67-75
URL: http://wjps.ir/article-1-776-en.html
Department of Plastic & Reconstruc-tive Surgery, Burn Research Center, Hazrat Fatima Hospital Iran Universi-ty of Medical Sciences, Tehran, Iran. , mjfatemi41@gmil.com
Abstract:   (683 Views)
This study was designed for the evaluation of Acellular Dermal Matrix (ADM) as a scaffold for adipose-derived stem cell transferring in the rat model.
This experimental study was done in the Burn Research Center of Iran University of Medical Sciences and Bonyakhteh Research Center, Tehran, Iran according to the standards of laboratory animals. Overall, 26 healthy Sprague-Dawley rats were used. Two of them were used to prepare ADM. In group one, the first wound on each, rat was spread with the mixture of fibrin gel and autologous stem cell. Only the stem cells combined with fibrinogen were spread on the other wound. In group two, the first wound on each rat was covered only with ADM, and the second wound was covered with gauze Vaseline. To perform sampling we used observation and photography at 7-30 days. Overall, 48 samples were taken of all the rats using skin punch biopsy on the 30th day for histopathology evaluation.
There were significant differences in each group; however, the difference between different groups on days was not significant. In pathology, epithelialization, vascularization, the amount of collagen, collagen arrangement, the number of fibroblasts, and inflammation indices were investigated. The total score in each group was used for analysis. In statistical analysis, there was no pathology score difference among groups.
Using stem cells with or without ADM could not enhance the process of wound healing or improve pathology indices.
Full-Text [PDF 799 kb]   (276 Downloads)    
Type of Study: Original Article | Subject: Special
Received: 2021/05/22 | Accepted: 2021/02/22 | Published: 2021/06/25

1. Wang Q, Jin Y, Deng X, Liu H, Pang H, Shi P, et al. Second-harmonic generation microscopy for assessment of mesenchymal stem cell-seeded acellular dermal matrix in wound-healing. Biomaterials. 2015;53:659-68. [DOI:10.1016/j.biomaterials.2015.03.011]
2. Tsai H-C, Shu H-C, Huang L-C, Chen C-M. A randomized clinical trial comparing a collagen-based composite dressing versus topical antibiotic ointment on healing full-thickness skin wounds to promote epithelialization. Formosan Journal of Surgery. 2019;52:52. [DOI:10.4103/fjs.fjs_58_18]
3. Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Taghdiri Nooshabadi V, Farzamfar S, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full‐thickness skin wounds: An in vivo study. Journal of Biomedical Materials Research Part A. 2020;108:545-56. [DOI:10.1002/jbm.a.36835]
4. Martin P. Wound healing--aiming for perfect skin regeneration. Science. 1997;276:75-81. [DOI:10.1126/science.276.5309.75]
5. Falanga V. Wound healing and its impairment in the diabetic foot. The Lancet. 2005;366:1736-43. [DOI:10.1016/S0140-6736(05)67700-8]
6. Conway N. Wound healing in the surgical patient. Pudner's Nursing the Surgical Patient E-Book. 2020:47.
7. Tang X, Hao M, Cheng C, Bhatia A, O'Brien K, Chen M, et al. Wound Healing Driver Gene (WDG) and Therapeutic Development: Political and Scientific Hurdles. Advances in Wound Care. 2020. [DOI:10.1089/wound.2019.1143]
8. Angspatt A, Puttilerpong C, Sirithanakorn C, Aramwit P. Traditional and Nontraditional Evaluation of Wound Healing Process. 2018. [DOI:10.1007/15695_2017_106]
9. Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sciences. 2020;256:118002. [DOI:10.1016/j.lfs.2020.118002]
10. Nie C, Yang D, Morris SF. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Medical hypotheses. 2009;72:679-82. [DOI:10.1016/j.mehy.2008.10.033]
11. Yang D, Sun S, Wang Z, Zhu P, Yang Z, Zhang B. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas. Cellular Reprogramming (Formerly" Cloning and Stem Cells"). 2013;15:206-15. [DOI:10.1089/cell.2012.0046]
12. Liu S, Liu Y, Jiang L, Li Z, Lee S, Liu C, et al. Recombinant human BMP-2 accelerates the migration of bone marrow mesenchymal stem cells via the CDC42/PAK1/LIMK1 pathway in vitro and in vivo. Biomaterials science. 2019;7:362-72. [DOI:10.1039/C8BM00846A]
13. Lin L, Lin H, Bai S, Zheng L, Zhang X. Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration. Neurochemistry international. 2018;115:80-4. [DOI:10.1016/j.neuint.2018.02.007]
14. Chiristiano AM. Epithelial stem cells: Stepping out of their niche. Cell. 2004:530-2. [DOI:10.1016/j.cell.2004.08.024]
15. Gentile P, Piccinno MS, Calabrese C. Characteristics and potentiality of human adipose-derived stem cells (hASCs) obtained from enzymatic digestion of fat graft. Cells. 2019;8:282. [DOI:10.3390/cells8030282]
16. Bai Y, Yan X-l, Ren J, Zeng Q, Li X-d, Pei X-t, et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochemical and biophysical research communications. 2018;497:305-12. [DOI:10.1016/j.bbrc.2018.02.076]
17. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of cellular biochemistry. 2006;99:1285-97. [DOI:10.1002/jcb.20904]
18. Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). International journal of molecular sciences. 2019;20:2523. [DOI:10.3390/ijms20102523]
19. Ibrahim A, Rodriguez‐Florez N, Gardner OF, Zucchelli E, New SE, Borghi A, et al. Three‐dimensional environment and vascularization induce osteogenic maturation of human adipose‐derived stem cells comparable to that of bone‐derived progenitors. Stem Cells Translational Medicine. 2020. [DOI:10.1002/sctm.19-0207]
20. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell. 2002;13:4279-95. [DOI:10.1091/mbc.e02-02-0105]
21. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells tissues organs. 2003;174:101-9. [DOI:10.1159/000071150]
22. Mirzaei-parsa MJ, Ghanbari H, Alipoor B, Tavakoli A, Najafabadi MRH, Faridi-Majidi R. Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell and tissue research. 2019;375:709-21. [DOI:10.1007/s00441-018-2927-6]
23. Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell transplantation. 2011;20:205-16. [DOI:10.3727/096368910X520065]
24. Kucharzewski M, Rojczyk E, Wilemska-Kucharzewska K, Wilk R, Hudecki J, Los MJ. Novel trends in application of stem cells in skin wound healing. European Journal of Pharmacology. 2019;843:307-15. [DOI:10.1016/j.ejphar.2018.12.012]
25. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Frontiers in physiology. 2018;9:419. [DOI:10.3389/fphys.2018.00419]
26. Lim SH, Mao H-Q. Electrospun scaffolds for stem cell engineering. Advanced drug delivery reviews. 2009;61:1084-96. [DOI:10.1016/j.addr.2009.07.011]
27. Thein-Han W, Saikhun J, Pholpramoo C, Misra R, Kitiyanant Y. Chitosan-gelatin scaffolds for tissue engineering: Physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Acta biomaterialia. 2009;5:3453-66. [DOI:10.1016/j.actbio.2009.05.012]
28. Hosseinzadeh S, Soleimani M, Vossoughi M, Ranjbarvan P, Hamedi S, Zamanlui S, et al. Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold. Materials Science and Engineering: C. 2017;75:653-62. [DOI:10.1016/j.msec.2017.02.101]
29. Sundaramurthi D, Krishnan UM, Sethuraman S. Epidermal differentiation of stem cells on poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) nanofibers. Annals of biomedical engineering. 2014;42:2589-99. [DOI:10.1007/s10439-014-1124-3]
30. Bakhtiari A, Cheshmi A, Naeimi M, Fathabad SM, Aliasghari M, Chahardehi AM, et al. Synthesis and characterization of the novel 80S bioactive glass: bioactivity,‎ biocompatibility, cytotoxicity. Journal of Composites and Compounds. 2020;2:110-4. [DOI:10.29252/jcc.2.3.1]
31. Daraei J. Production and characterization of PCL (Polycaprolactone) coated TCP/nanoBG composite scaffolds by sponge foam method for orthopedic applications. Journal of Composites and Compounds. 2020;2:45-50. [DOI:10.29252/jcc.2.1.6]
32. Goudarzi Z, Ijadi A, Bakhtiari A, Eskandarinezhad S, Azizabadi N, Jazi MA. Sr-doped bioactive glasses for biological applications. Journal of Composites and Compounds. 2020;2:105-9. [DOI:10.29252/jcc.2.2.7]
33. Nasibi S, Alimohammadi K, Bazli L, Eskandarinezhad S, Mohammadi A, Sheysi N. TZNT alloy for surgical implant applications: A systematic review. Journal of Composites and Compounds. 2020;2:62-8. [DOI:10.29252/jcc.2.2.1]
34. Demiri E, Papaconstantinou A, Dionyssiou D, Dionyssopoulos A, Kaidoglou K, Efstratiou I. Reconstruction of skin avulsion injuries of the upper extremity with integra® dermal regeneration template and skin grafts in a single-stage procedure. Archives of orthopaedic and trauma surgery. 2013;133:1521-6. [DOI:10.1007/s00402-013-1834-2]
35. Ryssel H, Gazyakan E, Germann G, Öhlbauer M. The use of MatriDerm® in early excision and simultaneous autologous skin grafting in burns-a pilot study. Burns. 2008;34:93-7. [DOI:10.1016/j.burns.2007.01.018]
36. Soejima K, Chen X, Nozaki M, Hori K, Sakurai H, Takeuchi M. Novel application method of artificial dermis: one-step grafting procedure of artificial dermis and skin, rat experimental study. Burns. 2006;32:312-8. [DOI:10.1016/j.burns.2005.10.013]
37. Wood FM, Stoner ML, Fowler BV, Fear MW. The use of a non-cultured autologous cell suspension and Integra® dermal regeneration template to repair full-thickness skin wounds in a porcine model: a one-step process. Burns. 2007;33:693-700. [DOI:10.1016/j.burns.2006.10.388]
38. Wang X, You C, Hu X, Zheng Y, Li Q, Feng Z, et al. The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats. Acta biomaterialia. 2013;9:7822-32. [DOI:10.1016/j.actbio.2013.04.017]
39. Srivastava A, Jennings LJ, Hanumadass M, Sethi S, DeSagun E, Pavlis N, et al. Xenogeneic Acellular Dermal Matrix as a Dermal Substitute in Rats. The Journal of Burn Care & Rehabilitation. 1999;20:382-90. [DOI:10.1097/00004630-199909000-00010]
40. Nie C, Zhang G, Yang D, Liu T, Liu D, Xu J, et al. Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats. J Tissue Eng Regen Med. 2015;9:224-35. [DOI:10.1002/term.1622]
41. Jin G, Prabhakaran MP, Kai D, Ramakrishna S. Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration. European Journal of Pharmaceutics and Biopharmaceutics. 2013;85:689-98. [DOI:10.1016/j.ejpb.2013.06.002]
42. Petschnik AE, Klatte JE, Evers LH, Kruse C, Paus R, Danner S. Phenotypic indications that human sweat glands are a rich source of nestin-positive stem cell populations. Br J Dermatol. 2010:380-3. [DOI:10.1111/j.1365-2133.2009.09512.x]
43. Zou Z, Zhang Y, Hao L, Wang F, Liu D, Su Y, et al. More insight into mesenchymal stem cells and their effects inside the body. Expert Opin Biol Ther. 2010:215-30. [DOI:10.1517/14712590903456011]
44. Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nature biotechnology. 2014;32:795-803. [DOI:10.1038/nbt.2978]
45. Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem cells in skin regeneration, wound healing, and their clinical applications. International journal of molecular sciences. 2015;16:25476-501. [DOI:10.3390/ijms161025476]
46. Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem cell research & therapy. 2019;10:229. [DOI:10.1186/s13287-019-1312-z]
47. Brockmann I, Ehrenpfordt J, Sturmheit T, Brandenburger M, Kruse C, Zille M, et al. Skin-derived stem cells for wound treatment using cultured epidermal autografts: clinical applications and challenges. Stem cells international. 2018;2018. [DOI:10.1155/2018/4623615]
48. Lau K, Paus R, Tiede S, Day P, Bayat A. Exploring the role of stem cells in cutaneous wound healing. Experimental dermatology. 2009;18:921-33. [DOI:10.1111/j.1600-0625.2009.00942.x]
49. Leirós GJ, Kusinsky AG, Drago H, Bossi S, Sturla F, Castellanos ML, et al. Dermal papilla cells improve the wound healing process and generate hair bud‐like structures in grafted skin substitutes using hair follicle stem cells. Stem cells translational medicine. 2014;3:1209-19. [DOI:10.5966/sctm.2013-0217]
50. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem cells. 2007;25:2648-59. [DOI:10.1634/stemcells.2007-0226]
51. Wang S, Mo M, Wang J, Sadia S, Shi B, Fu X, et al. Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property. Cellular and molecular life sciences. 2018;75:547-61. [DOI:10.1007/s00018-017-2641-7]
52. Yang M, He S, Su Z, Yang Z, Liang X, Wu Y. Thermosensitive Injectable Chitosan/Collagen/β-Glycerophosphate Composite Hydrogels for Enhancing Wound Healing by Encapsulating Mesenchymal Stem Cell Spheroids. ACS omega. 2020;5:21015-23. [DOI:10.1021/acsomega.0c02580]
53. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007:861-72. [DOI:10.1016/j.cell.2007.11.019]
54. Huang S-P, Hsu C-C, Chang S-C, Wang C-H, Deng S-C, Dai N-T, et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Annals of plastic surgery. 2012;69:656-62. [DOI:10.1097/SAP.0b013e318273f909]
55. Liu S, Zhang H, Zhang X, Lu W, Huang X, Xie H, et al. Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair. Tissue Engineering Part A. 2011;17:725-39. [DOI:10.1089/ten.tea.2010.0331]
56. Kim B-S, Debye B, Beier JP. Adipose-derived stem cells in cutaneous wound repair. Plastic and Aesthetic Research. 2018;5:31. [DOI:10.20517/2347-9264.2018.26]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | World Journal of Plastic Surgery

Designed & Developed by : Yektaweb