Volume 10, Issue 3 (7-2021)                   WJPS 2021, 10(3): 34-45 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Possiedi R D, Khoo L S, Mazzarone F, Costa C R V D, Stremel P. Expression of NF-κB-p65 and α-SMA in the Study of Capsules formed by Surface Textured Implants Versus Foam Covered Silicone Implants in a Rat Model. WJPS. 2021; 10 (3) :34-45
URL: http://wjps.ir/article-1-815-en.html
Department of Plastic & Reconstructive Surgery, Hospital Santa Casa de Misericórdia do Rio de Janeiro, 38th Infirmary Professor Ivo Pitanguy's Service, Rio de Janeiro, Brazil.
Abstract:   (2241 Views)
We aimed to compare inflammatory and intercellular transcription responses induced by surface textured (ST) implants versus foam covered (FC) silicone implants placed on the dorsal aspect of rats.
We utilized 80 female rats of the Wistar lineage. The rats were divided into four subgroups of 20 with one type of implant placed in the dorsum per rat. Analysis was carried out on peri-implant capsules at 90 d and at 180 d post-surgery with microscopic evaluation of inflammatory and immuno-histochemical response of NF-κB-p65 and α-SMA in fibroblasts. This study was carried out at the Evangelical Faculty of Parana and at the Ivo Pitanguy Institute, Brazil in 2015.
The FC exhibited higher levels of acute and chronic inflammation on evaluation in both time frames. The capsule surrounding the ST implants was significantly thicker with well-organized collagen fibres. NFκB-p65 expression in the capsule surrounding the FC implant was more pronounced. There was higher and more significant α-SMA expression in the capsules of the surface textured (ST) silicone implants compared to the foam-covered (FC) silicone implants. CONCLUSION
Activation of NFκB-p65 plays a key role in the evolution of capsule formation and maintenance of inflammation by regulating the healing process. Similarly, higher and more prolonged levels of inflammation (increased NF-κB-p65 results in increased inflammation) and lower α-SMA (higher α-SMA is protective against capsular contracture) did not directly translate to a thicker capsule and ultimately, capsular contracture in foam covered silicone implants.
Full-Text [PDF 1431 kb]   (1159 Downloads)    
Type of Study: Original Article | Subject: Special
Received: 2021/07/29 | Accepted: 2021/07/6 | Published: 2021/10/23

1. Araco A, Caruso R, Araco F, Overton J, Gravante G. Capsular contractures: a systematic review. Plast Reconstr Surg 2009;124(6):1808-19. [DOI:10.1097/PRS.0b013e3181bf7f26]
2. Handel N, Cordray T, Gutierrez J, et al. A long-term study of outcomes, complications, and patient satisfaction with breast implants. Plast Reconstr Surg 2006; 117:757-76. [DOI:10.1097/01.prs.0000201457.00772.1d]
3. Coleman DJ, Foo LTH, Sharpe DT. Textured or smooth implants for breast augmentation? A prospective controlled trial. Br J Plast Surg 44 (1991), p. 444. [DOI:10.1016/0007-1226(91)90204-W]
4. Ersek RA. Rate and incidence of capsular contracture: a comparison of smooth and textured Silicone double-lumen breast prostheses. Plast Reconstr Surg 87 (1991), p. 879. [DOI:10.1097/00006534-199105000-00012]
5. Pollock H. Breast capsular contracture: a retrospective study of textured versus smooth Silicone implants. Plast Reconstr Surg 92 (1993), p. 404. [DOI:10.1097/00006534-199303000-00002]
6. Swanson E. A 1-point plan to eliminate Breast Implant-Associated Anaplastic Large-Cell Lymphoma (BIA-ALCL). Ann Plast Surg 2018; 80:565-466. [DOI:10.1097/SAP.0000000000001455]
7. Gasperoni C, Salgarello M, Gargani G. Polyurethane-covered mammary implants: a 12-year experience. Ann Plast Surg 29 (1992), p. 303. [DOI:10.1097/00000637-199210000-00005]
8. Brand KG. Foam-covered mammary implants. Clin Plast Surg 1988; 15:533-539. [DOI:10.1016/S0094-1298(20)31388-2]
9. Wagenfuhr Jr J. Comparative Histopathological Analysis of Silicone and Polyurethane Foam Implants Capsules in Rats. Rev Bras Cir Plast 2007; 22:19-23.
10. Giridharan S, Srinivasan M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res 2018; 11:407-419. doi: 10.2147/JIR.S140188. [DOI:10.2147/JIR.S140188]
11. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 2012;180(4):1340-55. pmid:22387320. [DOI:10.1016/j.ajpath.2012.02.004]
12. Bui JM, Perry T, Ren CD, Nofrey B, Teitelbaum S, Van Epps DE. Histological characterization of human breast implant capsules. Aesthetic Plast Surg 2015 Jun; 39(3):306-15. [DOI:10.1007/s00266-014-0439-7]
13. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008; Elsevier. [DOI:10.1016/j.smim.2007.11.004]
14. Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R. The immunology of fibrosis: innate and adaptive responses. Trends Immunol 2010;31(3):110-9. [DOI:10.1016/j.it.2009.12.001]
15. Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A 2017;105(3):927-40. [DOI:10.1002/jbm.a.35958]
16. Cotran RS, Kumar V, Collins T. Robbins pathologic basis of disease 9th Professional Edition. [SI]: Saunders WB, 2014. p 1472.
17. Balderrama CM, Ribas-Filho JM, Malafaia O, Czeczko NG, Dietz UA, Sakamoto DG, Bittencourt LP. Healing reaction to mammary prostheses covered by textured silicone and silicone foam in rats. Acta Cir Bras 2009 Sep-Oct;24(5):367-76. [DOI:10.1590/S0102-86502009000500006]
18. Lesesne CB. Textured surface silicone breast implants: histology in the human. Aesthetic Plast Surg 1997;21(2): 93-96. [DOI:10.1007/s002669900091]
19. Batra M, Bernard S, Picha G. Histologic comparison of breast implant shells with smooth, foam, and pillar microstructuring in a rat model from 1 day to 6 months. Plast Reconstr Surg v. 95, n. 2, p. 354-363, 1995. [DOI:10.1097/00006534-199502000-00016]
20. Wagenfuhr Jr. Análise histológica comparativa das cápsulas dos implantes de espumas de silicone em ratos. Revista da Sociedade Brasileira de Cirurgia Plástica v. 22, n. 1, p. 19-23, 2007.
21. Abbas AK, Lichman AH, Pillay S. Cellular and molecular immunology. 8th ed. Philadelphia: Elsevier Inc., 2014. p 544.
22. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, Bottazzi B, Colombo MP, Mantovani A, Sica A. p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 2006 Dec 1;66(23):11432-40. [DOI:10.1158/0008-5472.CAN-06-1867]
23. Messadi DV, Doung HS, Zhang Q, Kelly AP, Tuan TL, Reichenberger E, Le AD. Activation of NFkappaB signal pathways in keloid fibroblasts. Arch Dermatol Res 2004 Aug [DOI:10.1007/s00403-004-0487-y]
24. 296(3):125-33. Epub 2004 Jul 28. [DOI:10.1111/j.1525-1594.2004.01007.x]
25. Tabary O, Boncoeur E, de Martin R, Pepperkok R, Clément A, Schultz C, Jacquot J. Calcium-dependent regulation of NF-(kappa)B activation in cystic fibrosis airway epithelial cells. Cell Signal 2006 May;18(5):652-60. Epub 2005 Aug 9. [DOI:10.1016/j.cellsig.2005.06.004]
26. Ishise H, Larson B, Hirata Y, Fujiwara T, Nishimoto S, Kubo T, et al. Hypertrophic scar contracture is mediated by the TRPC3 mechanical force transducer via NFkB activation. Sci Rep 2015 Jun 25;5: 11620. [DOI:10.1038/srep11620]
27. Barnes JL1, Gorin Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int 2011 May;79(9):944-56. doi: 10.1038/ki.2010.516. Epub 2011 Feb 9. [DOI:10.1038/ki.2010.516]
28. Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. Fibrogenesis Tissue Repair 2013 Nov 26;6(1):20. doi: 10.1186/1755-1536-6-20. [DOI:10.1186/1755-1536-6-20]
29. Ulrich D, Ulrich F, Pallua N, Eisenmann-Klein M. Effect of tissue inhibitors of metalloproteinases and matrix metalloproteinases on capsular formation around smooth and textured silicone gel implants. Aesthetic Plast Surg v. 33, p. 555-62, 2009. [DOI:10.1007/s00266-009-9335-y]
30. Bui JM, Perry T, Ren CD, Nofrey B, Teitelbaum S, Van Epps DE. Histological characterization of human breast implant capsules. Aesthetic Plast Surg v. 39, n. 3, p. 306-15, 2015. [DOI:10.1007/s00266-014-0439-7]
31. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol v. 214, n. 2, p. 199-210, 2008. [DOI:10.1002/path.2277]
32. Vieira VJ, d'Acampora AJ, Marcos AB, Di Giunta G, de Vasconcellos ZA, Bins-Ely J, d'Eça Neves R, Figueiredo CP. Vascular endothelial growth factor overexpression positively modulates the characteristics of periprosthetic tissue of polyurethane-coated silicone breast implant in rats. Plast Reconstr Surg 2010 Dec;126(6):1899-910. [DOI:10.1097/PRS.0b013e3181f446d5]
33. Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63 (1990), 21-9.
34. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. G J Cell Biol 1986 Dec;103(6 Pt 2):2787-96. [DOI:10.1083/jcb.103.6.2787]
35. Huang BP, Lin CH, Chen HM, Lin JT, Cheng YF, Kao SH. DNA Cell Biol. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages. DNA Cell Biology 2015 Feb;34(2):133-41. [DOI:10.1089/dna.2014.2630]
36. Rubino C, Mazzarello V, Farace F, D'Andrea F, Montella A, Fenu G, Campus GV. Ultrastructural anatomy of contracted capsules around textured implants in augmented breasts. Ann Plast Surg v. 46, n. 2, p. 95-102, 2001. [DOI:10.1097/00000637-200102000-00001]
37. Prantl L, Pöppl N, Horvat N, Heine N, Eisenmann-Klein M. Clinical and morphological conditions in capsular contracture formed around silicone breast implants. Plast Reconstr Surg v. 120, n. 1, p. 275-84, 2007. [DOI:10.1097/01.prs.0000264398.85652.9a]
38. Ivana Leme dC. Evaluation of Clinical Evolution of Breast Augmentation Using Implants with Silicone Foam Envelope and Implants with Textured Silicone Envelope. Adv Plast Reconstr Surg 2019; 3(3): 252-258.
39. Hamdi M. Association Between Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) Risk and Polyurethane Breast Implants: Clinical Evidence and European Perspective. Aesthet Surg J 2019 Jan 31;39(Suppl_1): S49-S54. [DOI:10.1093/asj/sjy328]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | World Journal of Plastic Surgery

Designed & Developed by : Yektaweb